Pressto.

Nagłowek strony

Open Access Dostęp otwarty  Restricted Access Subskrybcja albo opłata za dostęp do treści numeru/artykułu

Ataksje zwyrodnieniowe: wyzwania w badaniach klinicznych

Sub H. Subramony

DOI: https://doi.org/10.26625/np.2017.0.3.20

Abstrakt


Ataksje zwyrodnieniowe są bardzo niejednorodną grupą schorzeń, do której należą liczne choroby dziedziczne, a także jednostki chorobowe wyraźnie „sporadyczne”. Eksplozja odkryć dotyczących defektów genetycznych i odnoszących się do nich patomechanizmów doprowadziła nas na próg odkrycia istotnych metod leczenia niektórych, choć nie wszystkich, z tych chorób. Nadal brakuje wiedzy co do przyczyn choroby u sporego odsetka pacjentów. Ogólna rzadkość ataksji oraz jeszcze większa rzadkość występowania poszczególnych genetycznych jednostek chorobowych wraz z powolnym i zmiennym przebiegiem choroby oraz zmienne rokowanie w zestawieniu z gwałtownym rozwojem możliwych metod leczenia na horyzoncie, takich jak zastąpienie i wypłukiwanie genu, stawiają ataksje na unikalnej pozycji, odmiennej od podobnych chorób zwyrodnieniowych. Wydaje się, że tempo badań naukowych w laboratoriach nie pokrywa się z szybkością badań klinicznych i gotowością do prób klinicznych. Przegląd ten jest podsumowaniem poglądów autora na różne wyzwania badania translacyjnego w ataksjach i nadziei na pobudzenie dalszych pomysłów oraz dyskusji, jak rzeczywiście pomóc pacjentom.


Pełny tekst:

Bibliografia


Sridharan R, Radhakrishnan K, Ashok PP, et al. Prevalence and pattern of spinocerebellar degeneration in northeastern

Libya. Brain 1985;108:831–843.

Brignolio F, Leone M, Tribolo A, et al. Prevalence of hereditary ataxias and paraplegias in the province of Torino Italy.

Ital J Neurol Sci 1986;7:431–435.

Leone M, Brignolio F, Rosso MG, et al. Friedreich’s ataxia: a descriptive epidemiological study in an Italian population. Clin Genet 1990;38:161–169.

Polo JM, Calleja J, Cambarros O, et al. Hereditary ataxias and paraplegias in Cantabria, Spain. An epidemiological and clinical study. Brain 1991;114:855–886.

Filla A, De Michele G, Marconi R, et al. Prevalence of hereditary ataxias and spastic paraplegias in Molise, a region of Italy. J Neurol 1992;239:351–353.

Leone M, Bottacchi E, D’Alessandro G, et al. Hereditary ataxias and paraplegias in Valle d’Aosta, Italy: a study of prevalence and disability. Acta Neurol Scand 1995;91:183–187.

Silva MC, Coutinho P, Pinheiro CD, et al. Hereditary ataxias and spastic paraplegias: methodological aspects of a prevalence study in Portugal. J Clin Epidemiol 1997;50:1377–1384.

Sasaki H, Yabe I, Tashiro K. The hereditary spinocerebellar ataxias in Japan. Cytogenet Genome Res 2003;100:198–205.

Tsuji S, Onodera O, Goto J, et al. Sporadic ataxias in Japan – a population based epidemiological study. Cerebellum

;7:189–197.

Shibata-Hamaguchi A, Ishida C, Iwasa K, et al. Prevalence of spinocerebellar degenerations in the Hokuriku district in Japan. Neuroepidemiology 2009;32:176–183.

Muzaimi MB, Thomas J, Plamer-Smith S, et al. Population based study of late onset cerebellar ataxia in south east Wales.

J Neurol Neurosurg Psychiat 2004;75:1129–1134.

Erichsen AK, Koht J, Stray-Pedersen A, et al. Prevalence of hereditary ataxia and spastic paraplegia in southeast Norway:

a population-based study. Brain 2009;132:1577–1588.

Tallaway HNA, Farghaly WMA, Rageh TA, et al. Epidemiology of major neurological disorders project in Al Kharga district,

New Valley Egypt. Neuroepidemiology 2010;35:291–297.

Farghaly WM, El-Tallawy HN, Shehata GA, et al. Population-based study of acquired cerebellar ataxia in Al-Kharga district,

New Valley, Egypt. Neuropsychiatr Dis Treat 2011;7:183–187.

Coutinho P, Ruano L, Loureiro JL, et al. Hereditary ataxia and spastic paraplegia in Portugal: a population-based prevalence study. JAMA Neurol 2013;70:746–755.

Koutsis G, Kladi A, Karadima G, et al. Friedreich’s ataxia and other hereditary ataxias in Greece: an 18-year perspective.

J Neurol Sci 2014;15;336(1-2):87–92.

Musselman KE, Stoyanov CT, Marasigan R. Prevalence of ataxia in children: a systematic review. Neurology 2014;7(82):8.

Schols L, Bauer P, Schmidt T, et al. Autosomal dominant cerebellar ataxias: clinical features, genetics and pathogenesis.

Lancet Neurol 2004;3:291–304.

Sura T, Eu-Ahsunthornwattana J, Youngcharoen S, et al. Frequencies of spinocerebellar ataxia subtypes in Thailand:

window to the population history? J Hum Genet 2009;54:284–288.

Traoré M, Coulibaly T, Meilleur KG, et al. Clinical and genetic analysis of spinocerebellar ataxia in Mali. Eur J Neurol

;1:1269–1271.

Sumathipala DS, Abeysekera GS, Jayasekara RW, et al. Autosomal dominant hereditary ataxia in Sri Lanka. BMC Neurol

;1(13):39.

de Castilhos RM, Furtado GV, Gheno TC, et al. Spinocerebellar ataxias in Brazil–frequencies and modulating eff ects of related genes. Cerebellum 2014;13:17–28.

Pandolfo M. Friedreich ataxia: the clinical picture. J Neurol 2009;256(Suppl 1):3–8.

Anheim M, Fleury M, Monga B, et al. Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients

aff ected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management. Neurogenetics 2010;11:1–12.

Hamza W, Ali Pacha L, Hamadouche T, et al. Molecular and clinical study of a cohort of 110 Algerian patients with autosomal recessive ataxia. BMC Med Genet 2015;12(16):36.

Salman MS, Lee EJ, Tjahjadi A, et al. The epidemiology of intermittent and chronic ataxia in children in Manitoba Canada.

Dev Med Child Neurol 2013;55:341–347.

Wang JL, Yang X, Xia K, et al. TGM6 identifi ed as a novel causative gene of spinocerebellar ataxias using exome sequencing. Brain 2010;133:3510–3518.

Németh AH, Kwasniewska AC, Lise S, et al. Next generation sequencing for molecular diagnosis of neurological disorders

using ataxias as a model. Brain 2013;136:3106–3118.

Fogel BL, Lee H, Deignan JL, et al. Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia.

JAMA Neurol 2014;71:1237–1246.

Jacobi H, du Montcel ST, Bauer P, et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol 2015;14:1101–1108.

du Tezenas M, Charles P, Goizet C, et al. Factors infl uencing disease progression in autosomal dominant cerebellar ataxia

and spastic paraplegia. Arch Neurol 2012;69:500–508.

Ashizawa T, Figueroa KP, Perlman SL, et al. Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet J Rare Dis 2013;8:177.

Yasui K, Yabe I, Yoshida K, et al. A 3-year cohort study of the natural history of spinocerebellar ataxia type 6 in Japan.

Orphanet J Rare Dis 2014;9:118.

Lee YC, Liao YC, Wang PS, et al. Comparison of cerebellar ataxias: A three-year prospective longitudinal assessment. Mov

Disord 2011;26:2081–2087.

Franca MC Jr, D’Abreu A, Nucci A, et al. Progression of ataxia in patients with Machado-Joseph disease. Mov Disord

;24:1387–1390.

Jardim LB, Hauser L, Kieling C, et al. Progression rate of neurological defi cits in a 10-year cohort of SCA3 patients. Cerebellum 2010;9:419–428.

Schmitz-Hübsch T, Fimmers R, Rakowicz M, et al. Responsiveness of diff erent rating instruments in spinocerebellar ataxia

patients. Neurology 2010;23(74): 678–684.

Du Montcel ST, Charles P, Ribai P, et al. Composite cerebellar functional severity score: validation of a quantitative score of cerebellar impairment. Brain 2008;000:1352–1361.

Friedman LS, Farmer JM, Perlman S, et al. Measuring the rate of progression in Friedreich ataxia: implications for clinical

trial design. Mov Disord 2010;25:426–432.

Regner SR, Wilcox NS, Friedman LS, et al. Friedreich ataxia clinical outcome measures: natural history evaluation in 410

participants. J Child Neurol 2012;27:1152–1158.

Reetz K, Dogan I, Costa AS, et al. Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium

for Translational Studies (EFACTS) cohort: a cross-sectional analysis of baseline data. Lancet Neurol 2015;14:174–182.

Gagne JJ, Thompson L, O’Keefe K, et al. Innovative research methods for studying treatments for rare diseases: methodological review. BMJ 2014;24(349):g6802.

Haugen AC, Di Prospero NA, Parker JS, et al. Altered gene expression and DNA damage in peripheral blood cells from

Friedreich’s ataxia patients: cellular model of pathology. PLoS Genet 2010;15(6):e1000812.

Coppola G, Burnett R, Perlman S, et al. A gene expression phenotype in lymphocytes from Friedreich ataxia patients.

Ann Neurol 2011;70:790–804.

Salehi MH, Kamalidehghan B, Houshmand M, et al. Gene expression profi ling of mitochondrial oxidative phosphorylation

(OXPHOS) complex I in Friedreich ataxia (FRDA) patients. PLoS ONE 2014;4(9):e94069.

Lazaropoulos M, Dong Y, Clark E, et al. Frataxin levels in peripheral tissue in Friedreich ataxia. Ann Clin Transl Neurol

;2:831–842.

Swarup V, Srivastava AK, Padma MV, et al. Quantitative profi - ling and identifi cation of diff erentially expressed plasma proteins in Friedreich’s ataxia. J Neurosci Res 2013;91:1483–1491.

Pacheco LS, da Silveira AF, Trott A, et al. Association between Machado-Joseph disease and oxidative stress biomarkers.

Mutat Res 2013;757:99–103.

Shi Y, Huang F, Tang B, et al. MicroRNA profi ling in the serums of SCA3/MJD patients. Int J Neurosci 2014;124:97–101.

Klaes A, Reckziegel E, Franca MC Jr, et al. MR Imaging in spinocerebellar ataxias: a systematic review. AJNR Am J Neuroradiol 2016;37:1405–1412.

Della Nave R, Ginestroni A, Tessa C, et al. Brain white matter damage in SCA 1 and SCA 2. An in vivo study using voxel-based morphometry, histogram analysis of mean diff usivity and tract-based spatial statistics. NeuroImage 2008;43:10–19.

Schulz JB, Borkert J, Wolf S, et al. Visualization, quantifi cation and correlation of brain atrophy with clinical symptoms

in spinocerebellar ataxia types 1, 3 and 6. NeuroImage 2010;49:158–168.

Goel G, Pal PK, Ravishankar S, et al. Gray matter volume defi - cits in spinocerebellar ataxia: an optimized voxel based morphometric study. Parkinsonism Relat Disord 2011;17:521–527.

Kang J-S, Klein JC, Baudrexel S, et al. White matter damage is related to ataxia severity in SCA3. J Neurol 2014;261:291–299.

Reetz K, Costa AS, Mirzazade S, et al. Genotype-specifi c patterns of atrophy progression are more sensitive than clinical

decline in SCA1, SCA3 and SCA6. Brain 2013;136:905–917.

D’Abreu A, Franca MC Jr, Yasuda CL, et al. Neocortical atrophy in Machado-Joseph disease: a longitudinal neuroimaging

study. J Neuroimaging 2012;22:285–291.

Mascalchi M, Diciotti S, Giannelli M., et al. Progression of brain atrophy in spinocerebellar ataxia type 2: a longitudinal

tensor-based morphometry study. PLoS ONE 2014;9:e89410.

Sato K, Ishigame, K, Ying, SH, et al. Macro- and microstructural changes in patients with spinocerebellar ataxia type 6: assessment of phylogenetic subdivisions of the cerebellum and the brain stem. AJNR Am J Neuroradiol 2015;36:84–90.

de Rezendea TJ, D’Abreua A, Guimaraes RP, et al. Cerebral cortex involvement in Machado–Joseph disease. Eur J Neurol 2015;22:277–283.

Ye C, Yang Z, Ying SH. Segmentation of the cerebellar peduncles using a random forest classifi er and a multiobject geometric deformable model: application to spinocerebellar ataxia type 6. Neuroinformatics 2015;13:367–381.

Stefanescu MR, Dohnalek M, Maderwald S. Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich’s ataxia. Brain 2015;138:1182–1197.

Hernandez-Castillo CR, Galvez V, Mercadillo RE. Functional connectivity changes related to cognitive and motor

performance in spinocerebellar ataxia type 2. Mov Disord 2015;30:1391–1399.

Rezende TJ, Silva CB, Yassuda CL. Longitudinal magnetic resonance imaging study shows progressive pyramidal and callosal damage in Friedreich’s ataxia. Mov Disord 2016;31:70–78.

Itis I, Hutter D, Bushara KO, et al. 1H MR Spectroscopy in Friedreich’s Ataxia and Ataxia with Oculomotor Apraxia Type 2.

Brain Res 2010;28(1358):200–210.

Chen H-C, Lirng J-F, Soong B-W, et al. The merit of proton magnetic resonance spectroscopy in the longitudinal assessment of spinocerebellar ataxias and multiple system atrophy-cerebellar type. Cerebellum Ataxias 2014;1:17.

Adanyeguh IM, Henry P-G, Nguyen TM, et al. In vivo neurometabolic profi ling in patients with spinocerebellar ataxia

type 1, 2, 3 and 7. Mov Disord 2015;30:662–670.

Schöls L, Linnemann C, Globas C. Electrophysiology in spinocerebellar ataxias: spread of disease and characteristic fi ndings. Cerebellum 2008;7:198–203.

Pula JH, Towle VL, Staszak VM, et al. Retinal nerve fi bre layer and macular thinning in spinocerebellar ataxia and cerebellar multisystem atrophy. Neuroophthalmology 2011;35:108–114.

Rance G, Corben L, Delatycki M. Auditory processing deficits in children with Friedreich ataxia. J Child Neurol

;27:1197–1203.

Tsunemi T, Ishikawa K, Tsukui K, et al. The eff ect of 3,4-diaminopyridine on the patients with hereditary pure cerebellar ataxia. J Neurol Sci 2010;292:81–84.

Ristori G, Romano S, Visconti A, et al. Riluzole in cerebellar ataxia: a randomized, double-blind, placebo-controlled pilot trial. Neurology 2010;74:839–845.

Velázquez-Pérez L, Rodríguez-Chanfrau J, García-Rodríguez JC, et al. Oral zinc sulphate supplementation for six months in SCA2 patients: a randomized, doubleblind, placebo-controlled trial. Neurochem Res 2011;36:1793–1800.

Schniepp R, Wuehr M, Neuhaeusser M, et al. 4-aminopyridine and cerebellar gait: a retrospective case series. J Neurol 2012;259:2491–2493.

Zesiewicz TA, Greenstein PE, Sullivan KL, et al. A randomized trial of varenicline (Chantix) for the treatment of spinocerebellar ataxia type 3. Neurology 2012;78:545–550.

Strupp M, Teufel J, Habs M, et al. Eff ects of acetyl-DL-leucine in patients with cerebellar ataxia: a case series. J Neurol 2013;260:2556–2561.

Giordano I, Bogdanow M, Jacobi H, et al. Experience in a short-term trial with 4-aminopyridine in cerebellar ataxia. J Neurol 2013;260:2175–2176.

Romano S, Coarelli G, Marcotulli C, et al. Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2015;14:985–991.

Bushart DD, Murphy GG, Shakkottai VG. Precision medicine in spinocerebellar ataxias: treatment based on common mechanisms of disease. Ann Transl Med 2016;4:25.

Walter JT, Alviña K, Womack MD, et al. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci 2006;9:389–397.

Shakkottai VG, Xiao M, Xu L, et al. FGF14 regulates the intrinsic excitability of cerebellar Purkinje neurons. Neurobiol Dis

;33:81–88.

Akemann W, Knöpfel T. Interaction of Kv3 potassium channels and resurgent sodium current infl uences the rate of spontaneous fi ring of Purkinje neurons. J Neurosci 2006;26:4602–4612.

Shakkottai VG, Do Carmo Costa M, Dell’Orco JM, et al. Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3. J Neurosci 2011;31:13002–13014.

Dell’Orco JM, Wasserman AH, Chopra R, et al. Neuronal atrophy early in degenerative ataxia is a compensatory mechanism to regulate membrane excitability. J Neurosci 2015;35:11292–11307.

Grimaldi G, Argyropoulos GP, Boehringer A, et al. Noninvasive cerebellar stimulation – a consensus paper. Cerebellum

;13:121–138.

Ilg W, Bastian AJ, Boesch S, et al. Consensus paper: management of degenerative cerebellar disorders. Cerebellum 2014;13:248–268.

Jacobi H, Reetz K, du Montcel ST, et al. Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. Lancet Neurol 2013;12:650–658.

Velázquez-Pérez L, Rodríguez-Labrada R, Canales-Ochoa N, et al. Progression of early features of spinocerebellar ataxia

type 2 in individuals at risk: a longitudinal study. Lancet Neurol 2014;13:482–489.

Bushara K. We cannot cure ataxia, we can only eradicate it. JAMA Neurol 2013;1:1099.

Schulman JD, Stern HJ. Low utilization of prenatal and pre-implantation genetic diagnosis in Huntington disease – risk discounting in preventive genetics. Clin Genet 2015;88:220–223.

De Wert GM, Dondorp WJ, Knoppers BM. Preconception care and genetic risk: ethical issues. J Community Genet 2012;3:221–228.


Statystyki

Abstrakt - 230 PDF - 0

Altmetric

Zewnętrzne odnośniki

  • Obecnie brak jakichkolwiek odnośników.