

Ataksje zwyrodnieniowe: wyzwania w badaniach klinicznych
DOI: https://doi.org/10.26625/np.2017.0.3.20
Abstrakt
Ataksje zwyrodnieniowe są bardzo niejednorodną grupą schorzeń, do której należą liczne choroby dziedziczne, a także jednostki chorobowe wyraźnie „sporadyczne”. Eksplozja odkryć dotyczących defektów genetycznych i odnoszących się do nich patomechanizmów doprowadziła nas na próg odkrycia istotnych metod leczenia niektórych, choć nie wszystkich, z tych chorób. Nadal brakuje wiedzy co do przyczyn choroby u sporego odsetka pacjentów. Ogólna rzadkość ataksji oraz jeszcze większa rzadkość występowania poszczególnych genetycznych jednostek chorobowych wraz z powolnym i zmiennym przebiegiem choroby oraz zmienne rokowanie w zestawieniu z gwałtownym rozwojem możliwych metod leczenia na horyzoncie, takich jak zastąpienie i wypłukiwanie genu, stawiają ataksje na unikalnej pozycji, odmiennej od podobnych chorób zwyrodnieniowych. Wydaje się, że tempo badań naukowych w laboratoriach nie pokrywa się z szybkością badań klinicznych i gotowością do prób klinicznych. Przegląd ten jest podsumowaniem poglądów autora na różne wyzwania badania translacyjnego w ataksjach i nadziei na pobudzenie dalszych pomysłów oraz dyskusji, jak rzeczywiście pomóc pacjentom.
Bibliografia
Sridharan R, Radhakrishnan K, Ashok PP, et al. Prevalence and pattern of spinocerebellar degeneration in northeastern
Libya. Brain 1985;108:831–843.
Brignolio F, Leone M, Tribolo A, et al. Prevalence of hereditary ataxias and paraplegias in the province of Torino Italy.
Ital J Neurol Sci 1986;7:431–435.
Leone M, Brignolio F, Rosso MG, et al. Friedreich’s ataxia: a descriptive epidemiological study in an Italian population. Clin Genet 1990;38:161–169.
Polo JM, Calleja J, Cambarros O, et al. Hereditary ataxias and paraplegias in Cantabria, Spain. An epidemiological and clinical study. Brain 1991;114:855–886.
Filla A, De Michele G, Marconi R, et al. Prevalence of hereditary ataxias and spastic paraplegias in Molise, a region of Italy. J Neurol 1992;239:351–353.
Leone M, Bottacchi E, D’Alessandro G, et al. Hereditary ataxias and paraplegias in Valle d’Aosta, Italy: a study of prevalence and disability. Acta Neurol Scand 1995;91:183–187.
Silva MC, Coutinho P, Pinheiro CD, et al. Hereditary ataxias and spastic paraplegias: methodological aspects of a prevalence study in Portugal. J Clin Epidemiol 1997;50:1377–1384.
Sasaki H, Yabe I, Tashiro K. The hereditary spinocerebellar ataxias in Japan. Cytogenet Genome Res 2003;100:198–205.
Tsuji S, Onodera O, Goto J, et al. Sporadic ataxias in Japan – a population based epidemiological study. Cerebellum
;7:189–197.
Shibata-Hamaguchi A, Ishida C, Iwasa K, et al. Prevalence of spinocerebellar degenerations in the Hokuriku district in Japan. Neuroepidemiology 2009;32:176–183.
Muzaimi MB, Thomas J, Plamer-Smith S, et al. Population based study of late onset cerebellar ataxia in south east Wales.
J Neurol Neurosurg Psychiat 2004;75:1129–1134.
Erichsen AK, Koht J, Stray-Pedersen A, et al. Prevalence of hereditary ataxia and spastic paraplegia in southeast Norway:
a population-based study. Brain 2009;132:1577–1588.
Tallaway HNA, Farghaly WMA, Rageh TA, et al. Epidemiology of major neurological disorders project in Al Kharga district,
New Valley Egypt. Neuroepidemiology 2010;35:291–297.
Farghaly WM, El-Tallawy HN, Shehata GA, et al. Population-based study of acquired cerebellar ataxia in Al-Kharga district,
New Valley, Egypt. Neuropsychiatr Dis Treat 2011;7:183–187.
Coutinho P, Ruano L, Loureiro JL, et al. Hereditary ataxia and spastic paraplegia in Portugal: a population-based prevalence study. JAMA Neurol 2013;70:746–755.
Koutsis G, Kladi A, Karadima G, et al. Friedreich’s ataxia and other hereditary ataxias in Greece: an 18-year perspective.
J Neurol Sci 2014;15;336(1-2):87–92.
Musselman KE, Stoyanov CT, Marasigan R. Prevalence of ataxia in children: a systematic review. Neurology 2014;7(82):8.
Schols L, Bauer P, Schmidt T, et al. Autosomal dominant cerebellar ataxias: clinical features, genetics and pathogenesis.
Lancet Neurol 2004;3:291–304.
Sura T, Eu-Ahsunthornwattana J, Youngcharoen S, et al. Frequencies of spinocerebellar ataxia subtypes in Thailand:
window to the population history? J Hum Genet 2009;54:284–288.
Traoré M, Coulibaly T, Meilleur KG, et al. Clinical and genetic analysis of spinocerebellar ataxia in Mali. Eur J Neurol
;1:1269–1271.
Sumathipala DS, Abeysekera GS, Jayasekara RW, et al. Autosomal dominant hereditary ataxia in Sri Lanka. BMC Neurol
;1(13):39.
de Castilhos RM, Furtado GV, Gheno TC, et al. Spinocerebellar ataxias in Brazil–frequencies and modulating eff ects of related genes. Cerebellum 2014;13:17–28.
Pandolfo M. Friedreich ataxia: the clinical picture. J Neurol 2009;256(Suppl 1):3–8.
Anheim M, Fleury M, Monga B, et al. Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients
aff ected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management. Neurogenetics 2010;11:1–12.
Hamza W, Ali Pacha L, Hamadouche T, et al. Molecular and clinical study of a cohort of 110 Algerian patients with autosomal recessive ataxia. BMC Med Genet 2015;12(16):36.
Salman MS, Lee EJ, Tjahjadi A, et al. The epidemiology of intermittent and chronic ataxia in children in Manitoba Canada.
Dev Med Child Neurol 2013;55:341–347.
Wang JL, Yang X, Xia K, et al. TGM6 identifi ed as a novel causative gene of spinocerebellar ataxias using exome sequencing. Brain 2010;133:3510–3518.
Németh AH, Kwasniewska AC, Lise S, et al. Next generation sequencing for molecular diagnosis of neurological disorders
using ataxias as a model. Brain 2013;136:3106–3118.
Fogel BL, Lee H, Deignan JL, et al. Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia.
JAMA Neurol 2014;71:1237–1246.
Jacobi H, du Montcel ST, Bauer P, et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol 2015;14:1101–1108.
du Tezenas M, Charles P, Goizet C, et al. Factors infl uencing disease progression in autosomal dominant cerebellar ataxia
and spastic paraplegia. Arch Neurol 2012;69:500–508.
Ashizawa T, Figueroa KP, Perlman SL, et al. Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet J Rare Dis 2013;8:177.
Yasui K, Yabe I, Yoshida K, et al. A 3-year cohort study of the natural history of spinocerebellar ataxia type 6 in Japan.
Orphanet J Rare Dis 2014;9:118.
Lee YC, Liao YC, Wang PS, et al. Comparison of cerebellar ataxias: A three-year prospective longitudinal assessment. Mov
Disord 2011;26:2081–2087.
Franca MC Jr, D’Abreu A, Nucci A, et al. Progression of ataxia in patients with Machado-Joseph disease. Mov Disord
;24:1387–1390.
Jardim LB, Hauser L, Kieling C, et al. Progression rate of neurological defi cits in a 10-year cohort of SCA3 patients. Cerebellum 2010;9:419–428.
Schmitz-Hübsch T, Fimmers R, Rakowicz M, et al. Responsiveness of diff erent rating instruments in spinocerebellar ataxia
patients. Neurology 2010;23(74): 678–684.
Du Montcel ST, Charles P, Ribai P, et al. Composite cerebellar functional severity score: validation of a quantitative score of cerebellar impairment. Brain 2008;000:1352–1361.
Friedman LS, Farmer JM, Perlman S, et al. Measuring the rate of progression in Friedreich ataxia: implications for clinical
trial design. Mov Disord 2010;25:426–432.
Regner SR, Wilcox NS, Friedman LS, et al. Friedreich ataxia clinical outcome measures: natural history evaluation in 410
participants. J Child Neurol 2012;27:1152–1158.
Reetz K, Dogan I, Costa AS, et al. Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium
for Translational Studies (EFACTS) cohort: a cross-sectional analysis of baseline data. Lancet Neurol 2015;14:174–182.
Gagne JJ, Thompson L, O’Keefe K, et al. Innovative research methods for studying treatments for rare diseases: methodological review. BMJ 2014;24(349):g6802.
Haugen AC, Di Prospero NA, Parker JS, et al. Altered gene expression and DNA damage in peripheral blood cells from
Friedreich’s ataxia patients: cellular model of pathology. PLoS Genet 2010;15(6):e1000812.
Coppola G, Burnett R, Perlman S, et al. A gene expression phenotype in lymphocytes from Friedreich ataxia patients.
Ann Neurol 2011;70:790–804.
Salehi MH, Kamalidehghan B, Houshmand M, et al. Gene expression profi ling of mitochondrial oxidative phosphorylation
(OXPHOS) complex I in Friedreich ataxia (FRDA) patients. PLoS ONE 2014;4(9):e94069.
Lazaropoulos M, Dong Y, Clark E, et al. Frataxin levels in peripheral tissue in Friedreich ataxia. Ann Clin Transl Neurol
;2:831–842.
Swarup V, Srivastava AK, Padma MV, et al. Quantitative profi - ling and identifi cation of diff erentially expressed plasma proteins in Friedreich’s ataxia. J Neurosci Res 2013;91:1483–1491.
Pacheco LS, da Silveira AF, Trott A, et al. Association between Machado-Joseph disease and oxidative stress biomarkers.
Mutat Res 2013;757:99–103.
Shi Y, Huang F, Tang B, et al. MicroRNA profi ling in the serums of SCA3/MJD patients. Int J Neurosci 2014;124:97–101.
Klaes A, Reckziegel E, Franca MC Jr, et al. MR Imaging in spinocerebellar ataxias: a systematic review. AJNR Am J Neuroradiol 2016;37:1405–1412.
Della Nave R, Ginestroni A, Tessa C, et al. Brain white matter damage in SCA 1 and SCA 2. An in vivo study using voxel-based morphometry, histogram analysis of mean diff usivity and tract-based spatial statistics. NeuroImage 2008;43:10–19.
Schulz JB, Borkert J, Wolf S, et al. Visualization, quantifi cation and correlation of brain atrophy with clinical symptoms
in spinocerebellar ataxia types 1, 3 and 6. NeuroImage 2010;49:158–168.
Goel G, Pal PK, Ravishankar S, et al. Gray matter volume defi - cits in spinocerebellar ataxia: an optimized voxel based morphometric study. Parkinsonism Relat Disord 2011;17:521–527.
Kang J-S, Klein JC, Baudrexel S, et al. White matter damage is related to ataxia severity in SCA3. J Neurol 2014;261:291–299.
Reetz K, Costa AS, Mirzazade S, et al. Genotype-specifi c patterns of atrophy progression are more sensitive than clinical
decline in SCA1, SCA3 and SCA6. Brain 2013;136:905–917.
D’Abreu A, Franca MC Jr, Yasuda CL, et al. Neocortical atrophy in Machado-Joseph disease: a longitudinal neuroimaging
study. J Neuroimaging 2012;22:285–291.
Mascalchi M, Diciotti S, Giannelli M., et al. Progression of brain atrophy in spinocerebellar ataxia type 2: a longitudinal
tensor-based morphometry study. PLoS ONE 2014;9:e89410.
Sato K, Ishigame, K, Ying, SH, et al. Macro- and microstructural changes in patients with spinocerebellar ataxia type 6: assessment of phylogenetic subdivisions of the cerebellum and the brain stem. AJNR Am J Neuroradiol 2015;36:84–90.
de Rezendea TJ, D’Abreua A, Guimaraes RP, et al. Cerebral cortex involvement in Machado–Joseph disease. Eur J Neurol 2015;22:277–283.
Ye C, Yang Z, Ying SH. Segmentation of the cerebellar peduncles using a random forest classifi er and a multiobject geometric deformable model: application to spinocerebellar ataxia type 6. Neuroinformatics 2015;13:367–381.
Stefanescu MR, Dohnalek M, Maderwald S. Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich’s ataxia. Brain 2015;138:1182–1197.
Hernandez-Castillo CR, Galvez V, Mercadillo RE. Functional connectivity changes related to cognitive and motor
performance in spinocerebellar ataxia type 2. Mov Disord 2015;30:1391–1399.
Rezende TJ, Silva CB, Yassuda CL. Longitudinal magnetic resonance imaging study shows progressive pyramidal and callosal damage in Friedreich’s ataxia. Mov Disord 2016;31:70–78.
Itis I, Hutter D, Bushara KO, et al. 1H MR Spectroscopy in Friedreich’s Ataxia and Ataxia with Oculomotor Apraxia Type 2.
Brain Res 2010;28(1358):200–210.
Chen H-C, Lirng J-F, Soong B-W, et al. The merit of proton magnetic resonance spectroscopy in the longitudinal assessment of spinocerebellar ataxias and multiple system atrophy-cerebellar type. Cerebellum Ataxias 2014;1:17.
Adanyeguh IM, Henry P-G, Nguyen TM, et al. In vivo neurometabolic profi ling in patients with spinocerebellar ataxia
type 1, 2, 3 and 7. Mov Disord 2015;30:662–670.
Schöls L, Linnemann C, Globas C. Electrophysiology in spinocerebellar ataxias: spread of disease and characteristic fi ndings. Cerebellum 2008;7:198–203.
Pula JH, Towle VL, Staszak VM, et al. Retinal nerve fi bre layer and macular thinning in spinocerebellar ataxia and cerebellar multisystem atrophy. Neuroophthalmology 2011;35:108–114.
Rance G, Corben L, Delatycki M. Auditory processing deficits in children with Friedreich ataxia. J Child Neurol
;27:1197–1203.
Tsunemi T, Ishikawa K, Tsukui K, et al. The eff ect of 3,4-diaminopyridine on the patients with hereditary pure cerebellar ataxia. J Neurol Sci 2010;292:81–84.
Ristori G, Romano S, Visconti A, et al. Riluzole in cerebellar ataxia: a randomized, double-blind, placebo-controlled pilot trial. Neurology 2010;74:839–845.
Velázquez-Pérez L, Rodríguez-Chanfrau J, García-Rodríguez JC, et al. Oral zinc sulphate supplementation for six months in SCA2 patients: a randomized, doubleblind, placebo-controlled trial. Neurochem Res 2011;36:1793–1800.
Schniepp R, Wuehr M, Neuhaeusser M, et al. 4-aminopyridine and cerebellar gait: a retrospective case series. J Neurol 2012;259:2491–2493.
Zesiewicz TA, Greenstein PE, Sullivan KL, et al. A randomized trial of varenicline (Chantix) for the treatment of spinocerebellar ataxia type 3. Neurology 2012;78:545–550.
Strupp M, Teufel J, Habs M, et al. Eff ects of acetyl-DL-leucine in patients with cerebellar ataxia: a case series. J Neurol 2013;260:2556–2561.
Giordano I, Bogdanow M, Jacobi H, et al. Experience in a short-term trial with 4-aminopyridine in cerebellar ataxia. J Neurol 2013;260:2175–2176.
Romano S, Coarelli G, Marcotulli C, et al. Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2015;14:985–991.
Bushart DD, Murphy GG, Shakkottai VG. Precision medicine in spinocerebellar ataxias: treatment based on common mechanisms of disease. Ann Transl Med 2016;4:25.
Walter JT, Alviña K, Womack MD, et al. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci 2006;9:389–397.
Shakkottai VG, Xiao M, Xu L, et al. FGF14 regulates the intrinsic excitability of cerebellar Purkinje neurons. Neurobiol Dis
;33:81–88.
Akemann W, Knöpfel T. Interaction of Kv3 potassium channels and resurgent sodium current infl uences the rate of spontaneous fi ring of Purkinje neurons. J Neurosci 2006;26:4602–4612.
Shakkottai VG, Do Carmo Costa M, Dell’Orco JM, et al. Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3. J Neurosci 2011;31:13002–13014.
Dell’Orco JM, Wasserman AH, Chopra R, et al. Neuronal atrophy early in degenerative ataxia is a compensatory mechanism to regulate membrane excitability. J Neurosci 2015;35:11292–11307.
Grimaldi G, Argyropoulos GP, Boehringer A, et al. Noninvasive cerebellar stimulation – a consensus paper. Cerebellum
;13:121–138.
Ilg W, Bastian AJ, Boesch S, et al. Consensus paper: management of degenerative cerebellar disorders. Cerebellum 2014;13:248–268.
Jacobi H, Reetz K, du Montcel ST, et al. Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. Lancet Neurol 2013;12:650–658.
Velázquez-Pérez L, Rodríguez-Labrada R, Canales-Ochoa N, et al. Progression of early features of spinocerebellar ataxia
type 2 in individuals at risk: a longitudinal study. Lancet Neurol 2014;13:482–489.
Bushara K. We cannot cure ataxia, we can only eradicate it. JAMA Neurol 2013;1:1099.
Schulman JD, Stern HJ. Low utilization of prenatal and pre-implantation genetic diagnosis in Huntington disease – risk discounting in preventive genetics. Clin Genet 2015;88:220–223.
De Wert GM, Dondorp WJ, Knoppers BM. Preconception care and genetic risk: ethical issues. J Community Genet 2012;3:221–228.
Statystyki
Abstrakt - 230 PDF - 0Altmetric
Zewnętrzne odnośniki
- Obecnie brak jakichkolwiek odnośników.